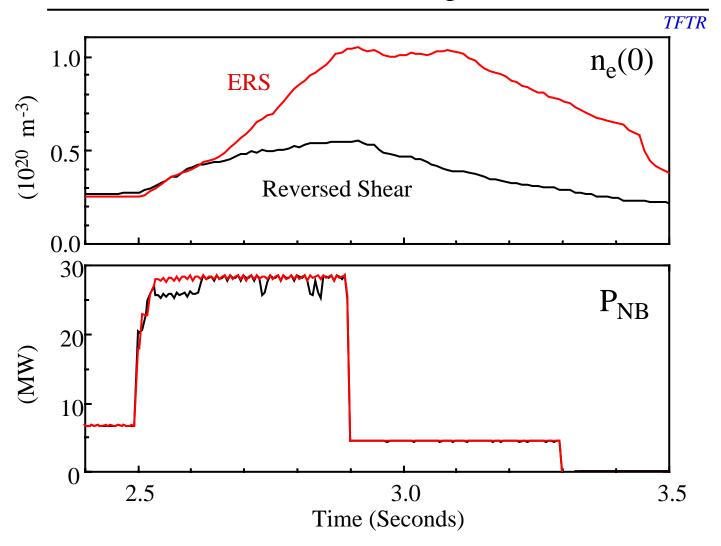
Electron Transport and Barriers in Reversed Shear Plasmas in TFTR

M.C. Zarnstorff,
N. Bretz, W. Dorland¹, E. Fredrickson, M. Hughes²,
M. Kotschenreuther³, J. Manickam, E. Mazzucato, J. Menard,
H. Park, S. Batha⁴, M. Bell, R. Bell, F. Levinton⁴, E. Synakowski,
G. Taylor, and the TFTR Group

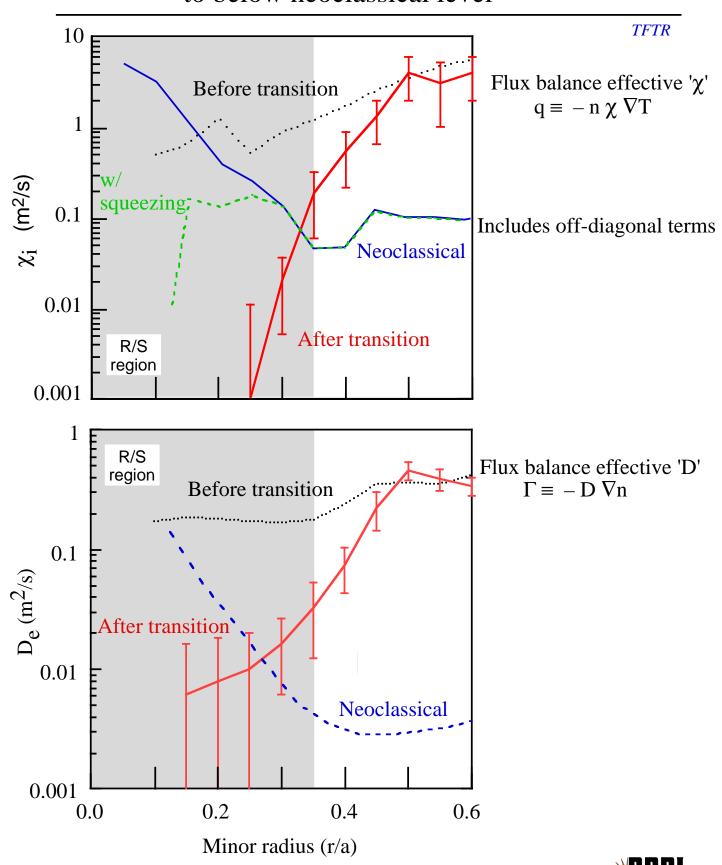
Princeton Plasma Physics Laboratory Princeton University

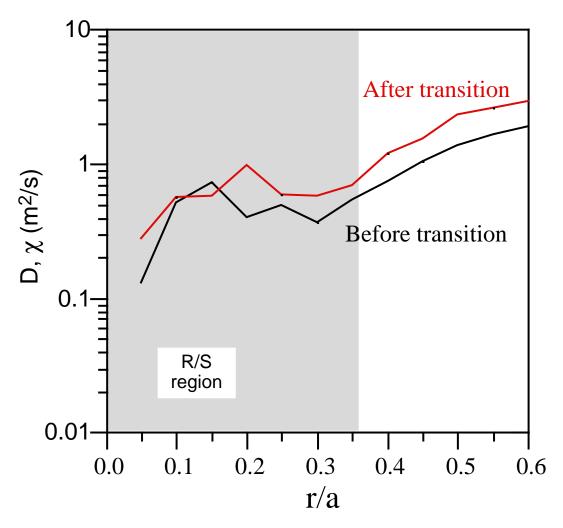
¹Univ. Maryland ²Advanced Energy Systems, Inc. ³IFS, Univ. Texas ⁴FP&T


> 16 November 1998 APS/DPP New Orleans, LA

Motivation & Outline

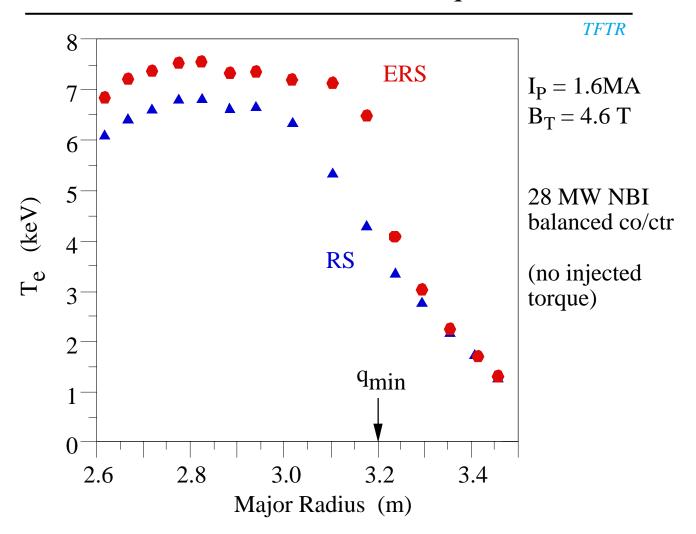
- Core Ion thermal transport suppression demonstrated on many machines with reversed or weak magnetic shear (Internal Transport Barriers)
 - in some cases particle transport also suppressed
 - likely due to ExB flow-shear suppression of long-wavelength turbulence
- → basis for Advanced Tokamak and Compact Stellarator Configurations
- Electron thermal transport is sometimes reduced, sometimes ~unchanged; always anomalous.
 - need to develop predictive understanding
 - need to understand to try to suppress
- Brief review of Enhanced Reversed Shear (ERS) transport and profiles
- Detailed structure of T_e profile, transport
- Comparisons with theoretical predictions


Two Confinement Regimes Observed with Reversed Core Magnetic Shear

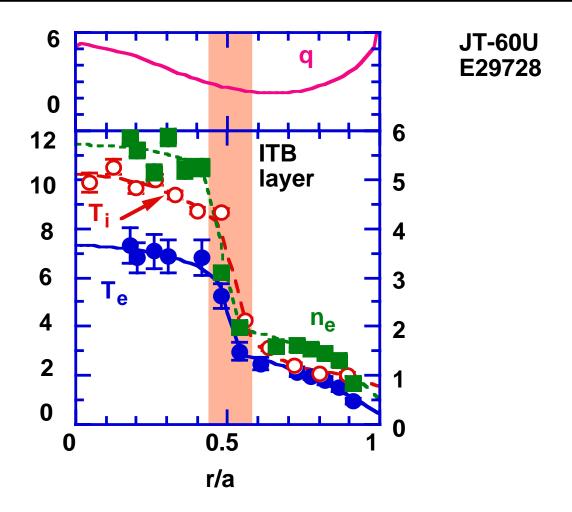


- Plasmas with reversed or weak magnetic shear can show a sudden transition to reduced core transport of particles and energy (ERS mode – Enhanced Reversed Shear)
- ERS plasmas develop extremely peaked profiles $-n_e(0)/\langle n_e \rangle \sim 5$, $p(0)/\langle p \rangle \sim 8$ p(0) up to ~ 6 atmospheres
- ERS plasmas show extreme hysteresis High central density can be maintained with ~5 MW of NBI

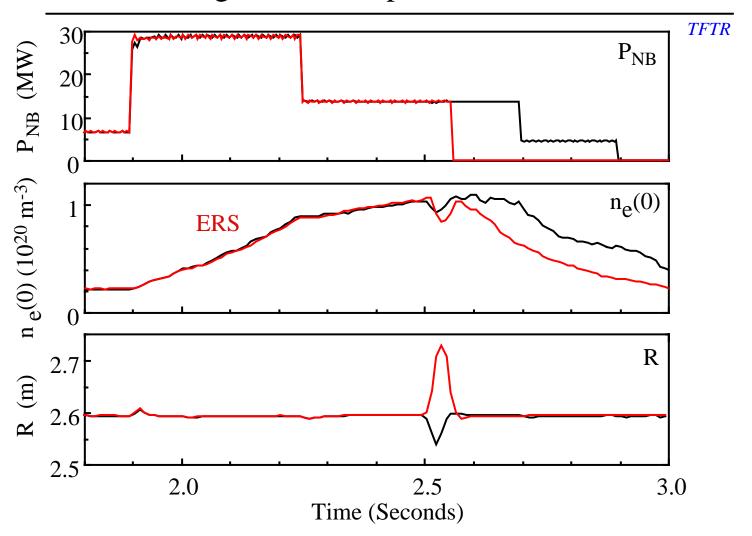
χ_i and De are Sharply Reduced after Transition to below neoclassical level

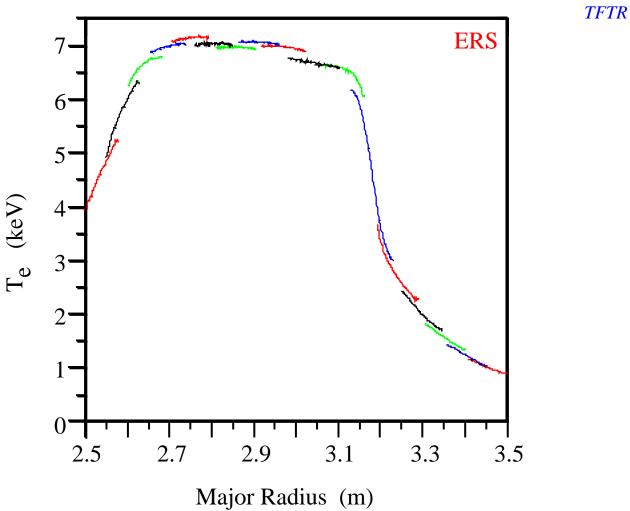


- Is χ_e larger in ERS?
 - or ~ equal within the uncertainties
 - uncertainties due to large time derivatives and profile measurements of ∇T
- Why?

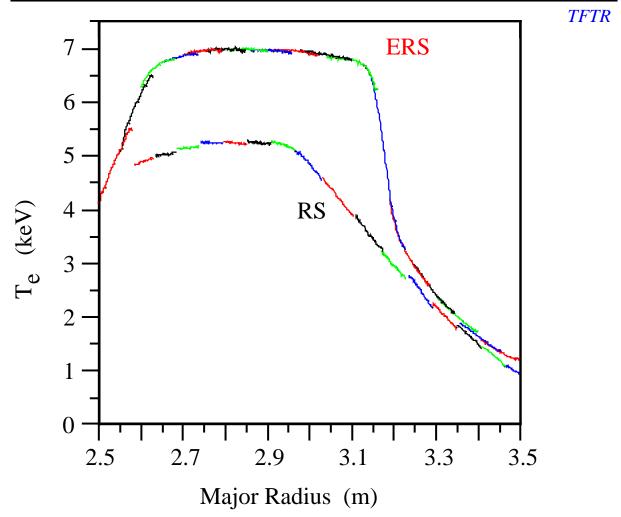


ERS Te Profiles Are Broader, Squarer than RS

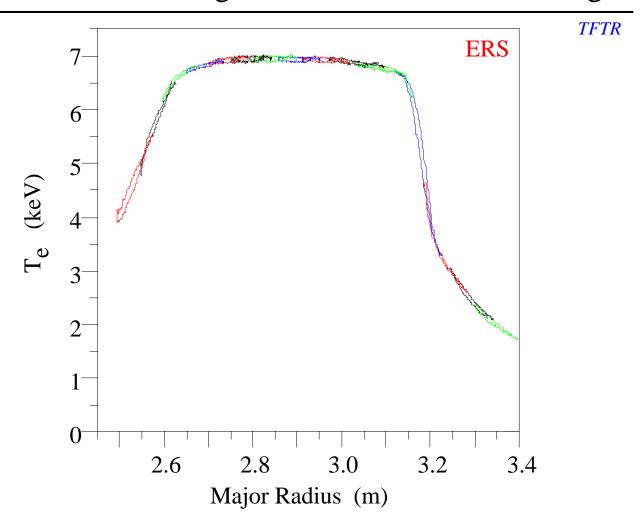

- Te measured by ECE grating polychromator, each channel cross calibrated to Michelson interferometer
- Adjacent identical shots, except one transitions to ERS
- ERS Te profile shape develops ~ 0.1 sec after transition
- Observed on all ERS, Type I transitions Not observed on Type II transitions
- Gradient in reversed shear region is within systematic uncertainty of diagnostic calibration


- see H. Shirai et al, Phys. Plasmas 5, 1712 (1998) and 1998 IAEA, Yokahama, Japan.
- also observed on T_e only in Asdex-Upgrade, see paper by R. Wolf et al, 1998 IAEA, Yokahama, Japan.

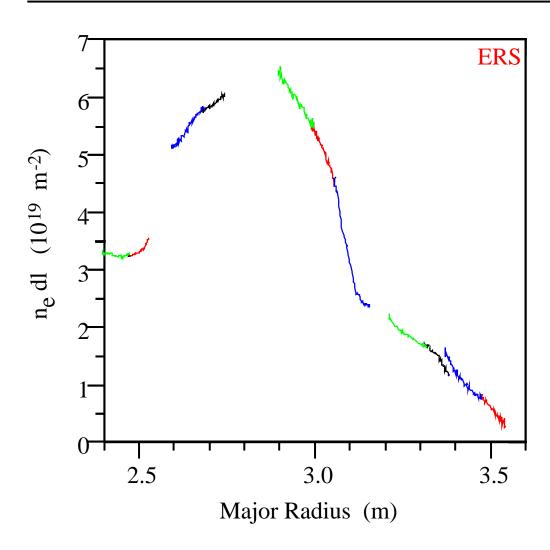
Plasma 'Jog' Used to Improve Radial Resolution


- Sweep plasma past fixed detectors to improve radial resolution both inward and outward motions used
- Maximum velocity ~ 3 m/sec; sample rate up to 500 kHz
- Jog during reduced power 'postlude' plasma near steady state
- Gives single detector measurement of gradients ⇒ reduced systematic uncertainty

- Each colored segment shows the trajectory of a single detector during the plasma motion, mapped to the pre-motion position
- Similar profiles obtained at low and high B ERS shots
- Note corner in T_e profile near shear-reversal point

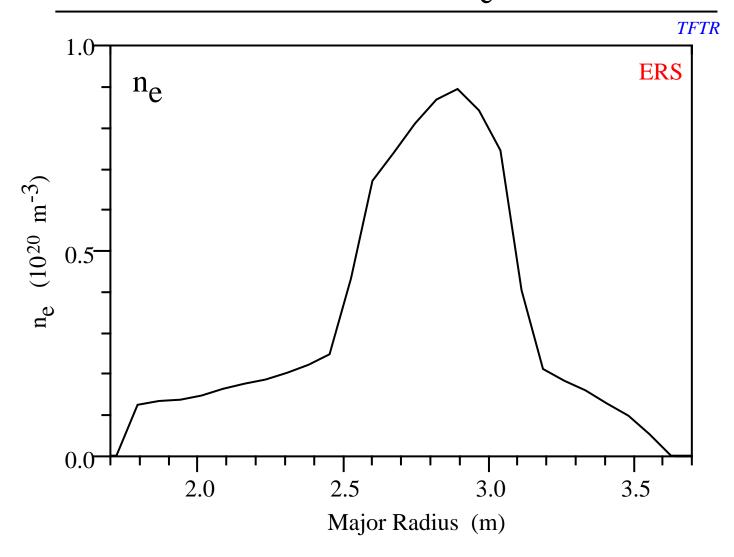


- Detector calibrations corrected correction factors averaged over 4 shots in core-region < 4 % corrections, typ. ~ 2%
- ERS Not profile consistent !!
- Most of the ERS core ∇ Te in the standard analysis is from systematic errors in detector calibration
- RS profile similar to jog-measured T_e profile for supershots profile shape ~ similar to other regimes L-mode, supershot, ohmic,...

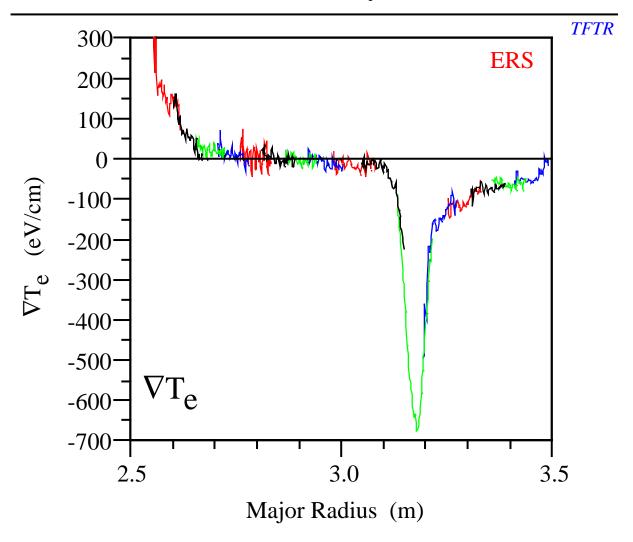


Forward/Back Jog Shows Plasma is not Damaged

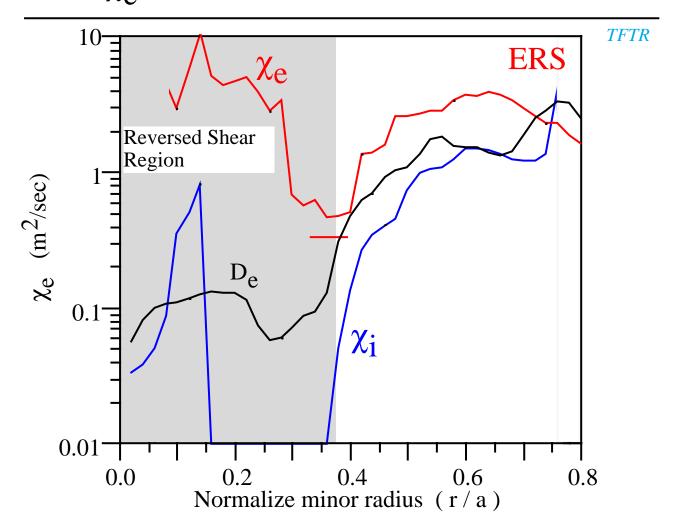
- Shows full jog, moving out and then back to original position elapsed time: 70 msec
- Individual detectors trace loops, height ~50 eV in core
- Loops close ⇒ likely residual problems with plasma position measurement



- Combination of two identical shots, one jog'd inward, one jog'd outwards
- Also: jog'd core Visible Bremstrahlung emission \propto $n_e^2 T_e^{1/2} Z_{eff}$ very peaked, consistent with peaked n_e


Jog'd Interferometetry: Core ne is Peaked

- From Abel Inversion of jog'd nel profile
- Peak n_e is ~10% lower than non-jog standard analysis
- Outer edge of steep gradient is at same location as for T_e
- T_i and v_{ϕ} measurment averaging time too long for jog-technique
 - however, those profiles are peaked outside the error bars


Core ∇ Te is Extremely Low in ERS

- ∇T_e measuremented by a single detector in each spatial region, from change in T_e during plasma motion minimize systematic uncertainty
- ∇T_e ~ 15 eV/cm in core, averaged over one cm.
- Very high ∇T_e near shear-reversal surface
- transition from ~ 60 eV/cm to > 300 eV/cm with <2 cm separation!
 At the limit of instrumental spatial (frequency) resolution

ERS χ_e is Increased in Core, Reduced in Barrier

- ullet Power balance analysis of jog'd profiles for T_e and n_e
- Analysis during near-steady-state 'postlude'
 Reduced uncertainties relative to earlier analysis with large timederivatives. Largest uncertainty now, for thermal transport, is due
 to Ti and the ripple modeling.
- $\chi_e / D_e \sim 50$ in the core !! ~ 4 in the barrier

 $\chi_e / \chi_i \sim 100$ in the core

Most Plausible Explanation:

Stochastic B!

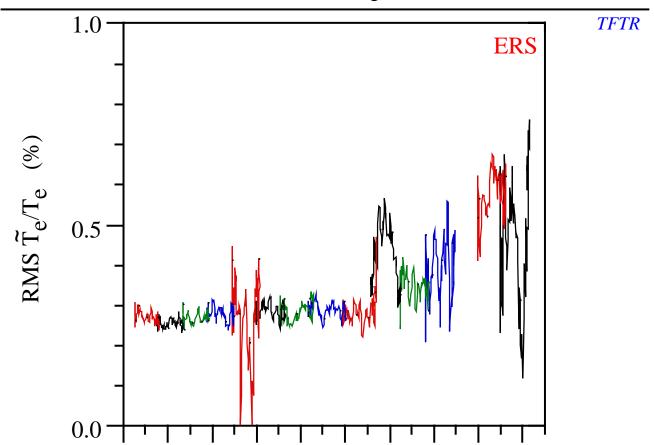
TFTR

In core: $\chi_e / D_e \sim 50$, $\chi_e / \chi_i > 100$

- Difficult to understand how electrostatic modes could give such large χ_e / D_e
 - Rechester-Rosenbluth: χ_e / D_e ~ $m^{1/2}$ = 67 would require \widetilde{B}_r/B ~ 3 x 10⁻⁴
- Must be high $k_{\perp}\rho_i$ turbulence to avoid ion transport via ion orbit averaging.

$$- \rho_i = 0.3 - 0.5 \text{ cm}$$

What Instability?


Fundamental problem: What gradient provides drive? T_e is being transported, but $\nabla T_e \sim 0$.

Substantial ∇T_i and ∇n_e , but they are not being dissipated.

• η_e or Electron Temperature Gradient-Mode (ETG) has no drive

$$\begin{array}{ll} L_{Te} \sim 3.5 \ m & > R = 2.6 \ m \\ \eta_e < 0.1 & \end{array}$$

No Apparent Core T_e Fluctuations

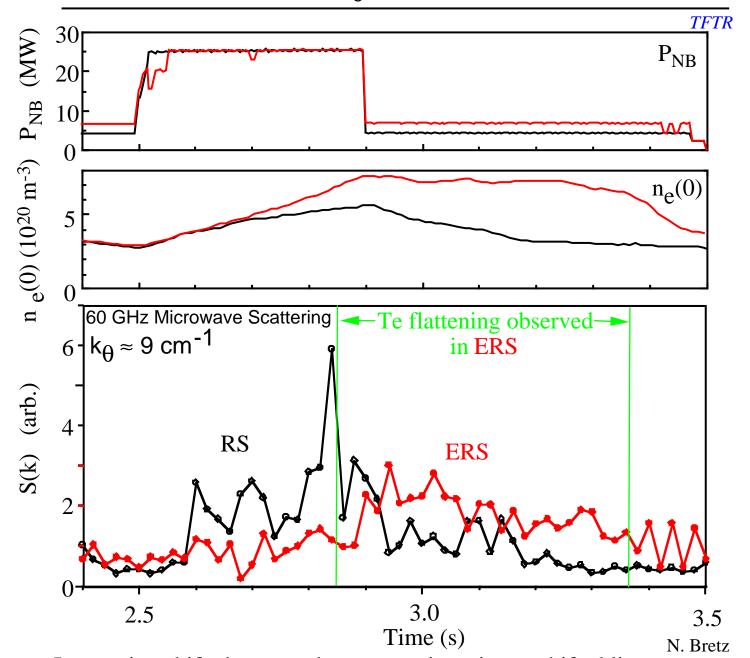
 RMS T_e fluctuation in 1ms intervals, mapped to pre-motion position

2.8

2.6

• Amplifier noise subtracted. Channel at $R \sim 2.87$ m very noisy

Major Radius (m)


3.0

3.2

3.4

- In core, measured T_e fluctuations consistent with expected ECE blackbody noise.
 - As expected for convective modes with $\nabla T_e \sim 0$.
- Very small 60 +/- 10 kHz fluctuations near shear reversal also observed on reflectometer, Mirnov array n = -3, m = 5 7 from Mirnov displacement ≤ 1 mm

No Strong High-k_O Density Fluctuations

- Integrating shifted scattered spectrum, ignoring unshifted line center
- Core T_e flattening observed in ERS case from ~2.85 s thru ~3.37 s
- Scattered signal is proportional to density ⇒ fluctuations similar in postlude phase for ERS and RS
- For $k_{\theta} \sim 2$ cm⁻¹, RS fluctuation level higher than in ERS, similar to reflectometer measurements

Core χ_e : Possible Models

TFTR

- No unstable ideal MHD modes found (J. Manickam)
- Electromagnetic skin-depth

$$\frac{c^2 \quad v_{Te}}{\omega_{pe}^2 \quad R \quad q} \quad \sim \quad 1 \quad m^2/s \quad << \quad \chi_e$$

- Resistive Interchange: $D_R \sim 1$ both ERS and RS (M. Hughes)
 - mode is barely unstable, easily stabilized kinetically
 - at higher β values, $D_R \sim 70$ has been calculated appears to be uncorrelated with transport
- Resistive pressure gradient turbulence [e.g. Carreras-Diamond, Phys. Fluids B1, 1017 (1989)]
 - predicts large enough transport,
 - Gives same level for ERS and RS: no discrimination.
 - Should be re-examined, including flow shear
- GS code by M. Kotschenreuther [CPC 88, 128 (1995)]
 - Comprehensive linear stability analysis of full gyrokinetic equations (Antonsen and Lane) in ballooning representation.
 - Should address all short wavelength electrostatic and electromagnetic modes, including resistive interchange, resistive ballooning, micro-tearing, ETG, ...
 - finds no linearly-unstable modes!!

Need to look at non-linear instabilities and (possibly) tearing modes (below neoclassical stabilization)

Transport in the Barrier: ETG?

TFTR

The GS code has also analyzed the microstability of the electron transport barrier region, where χ_e is suppressed in ERS.

Preliminary results:

(some cross checking in progress)

- unstable mode with $k_{\perp}\rho_i \sim 100$, $k_{\perp}\rho_e \sim 1$
- ∇T_e is ~30% higher than the critical gradient for ETG

ETG is analogous to ITG (with $i \leftrightarrow e$), but with strictly adiabatic ions due to the very high $k_{\perp}\rho_i$

 \Rightarrow strong gyro-averaging.

From the analogous ITG calculation, can estimate

• $\chi_e(ETG) > 30 D_{mix} \sim 3 \chi_e(Exp) \sim 100 \chi_i(ETG)$

where D_{mix} is the Kadomtsev mixing length estimate $D_{mix} \sim \gamma / k_{\perp}^2$

⇒ ETG may be strong enough to enforce marginality uncertainties need to be investigated

- T_e is <u>very flat</u> in the core of ERS plasmas (inside the shear reversal surface)
- χ_e in the ERS core is <u>much larger</u> than in RS
 - in contrast to D_e , χ_i , χ_{ϕ}
- $\chi_e \sim 50 D_e$, $\sim 100 \chi_i$ in core!
 - may imply that the core magnetic field is stochastic, on a very fine scale
 - dissipating ∇T_e but no ∇T_e drive! what is driving the turbulence?
 - no instabilities found by comprehensive code
- ∇T_e is locally <u>very large</u> (~ 680 eV/cm) in ~5 cm layer near reversal surface
- χ_e is 4 times lower in ERS than RS in layer near reversal surface
 - clear electron thermal transport
 - may be limited by ETG

